
Black Hole Astrophysics 
Chapters  9.2.2&9.4 

All figures extracted from online sources of from the textbook. 



Laws of Conservation of  
Charge and Current (Ch9.2.2) 



Conservation of Charge 

Very much mass density, the charge density is the sum of all species. 
 

𝜌𝑞 ≡ 𝛴
𝑖
⁢𝑛𝑖 ⁢𝑞𝑖 

 
However, in this case, it can be zero everywhere in the plasma. 

From the continuity equation in classical physics 
𝜕𝜌𝑞

𝜕𝑡
+ 𝛻 · 𝐽 = 0, we can very 

easily translate that to 𝛻𝛼𝐽
𝛼 = 0. 

 
This equation enables us to determine only 𝜌𝑞, therefore we will later introduce 

the⁢Generalized⁢Ohm’s⁢law⁢to⁢find⁢the⁢ 𝐽  part. 

*Note： 
I sort of find it confusing to have all these 3-vectors and 4-vectos together in 1 
slide, so to avoid having to label which is a 3-vector and which is a 4-vector, I 
chose to put vector/tensor symbols only for 3-vectors and all 4-vectors will be 
written in component form. 



Conservation of Charge 

Without loss of generality, we can separate the 4-current into 
 

𝐽𝛼 = 𝜌𝑞⁢𝑈
𝛼 + 𝔍𝛼 

 
Containing a component parallel to U and another perpendicular to it. 
 

Therefore, 𝔍𝛼 ≡ 𝑃αβ⁢𝐽𝛽  

 
And it automatically satisfies 𝑈𝛼⁢𝔍𝛼 = 0 as we derived last week for the 
projection tensor. 



Recap for Plasma Astrophysics 
Recall that we had defined the velocity of a fluid element as 𝑣 =

𝑚𝑒⁢𝑛𝑒⁢𝑣
 
𝑒+𝑚𝑖⁢𝑛𝑖⁢𝑣

 
𝑖

𝜌𝑚
≈ 𝑣 𝑖 , 

this is due to the fact that momentum is dominated by protons and therefore the 
center of momentum velocity can be approximated by the proton velocity. 

Next, the current is defined as 𝐽 = 𝑞𝑒⁢𝑛𝑒⁢𝑣 𝑒 + 𝑞𝑖 ⁢𝑛𝑖 ⁢𝑣 𝑖 ≈ 𝑞𝑒⁢𝑛𝑒⁢ 𝑣 𝑒 − 𝑣 𝑖 . The 
interesting thing to observe here is that given not too much of a density difference 
between the protons and electrons, the current becomes proportional to the 
difference of velocities ⁢ 𝑣 𝑒 − 𝑣

 
𝑖 . 

 

A⁢useful⁢(at⁢least⁢I⁢find⁢it⁢useful…)⁢way⁢of⁢thinking⁢of⁢this⁢is⁢that⁢current,⁢⁢ 𝐽  is caused 
motion of electrons with respect to the c.m. velocity (which is 𝑣 𝑖) of the fluid 
elements. 
 
Thus, 

 fluid element motion is driven by protons  
 current is mainly caused by electrons. 

Using⁢these⁢two⁢simple⁢concepts⁢we⁢can⁢understand⁢the⁢Generalized⁢Ohm’s⁢law⁢quite⁢
simply. 



The⁢generalized⁢Ohm’s⁢law⁢– Review 
The⁢generalized⁢Ohm’s⁢law⁢reads⁢as⁢: 

𝜕 𝐽 

𝜕𝑡
= −
𝑞𝑒
𝑚𝑒
⁢𝛻 · 𝑃
 
𝑒 +
𝑛𝑒⁢𝑞𝑒

2

𝑚𝑒
⁢ 𝐸 + 𝑣 × 𝐵 +

𝑞𝑒
𝑚𝑒
⁢ 𝐽 × 𝐵 −

𝑛𝑒 ⁢𝑞𝑒
2

𝑚𝑒
⁢𝜂 · 𝐽  

 
In simple language, it simply says:  

What are the different ways we can cause the current to change?  
𝜕 𝐽 

𝜕𝑡
= ⋯ 

1. The Pressure gradient term −
𝑞𝑒

𝑚𝑒
⁢𝛻 · 𝑃
 
𝑒  

As we just explained, current is caused by velocity difference between 𝑒−&⁢𝑝+, 
however, if the pressure on 𝑒−&⁢𝑝+  are similar, ⁢𝑝+ , being heavier, is harder to push. 
 
Thus,⁢mostly⁢it’s⁢only⁢the⁢electrons⁢being⁢accelerated. 

𝐽 (t) 

𝑣 𝑖(t)~ 𝑣 𝑖(t+dt) 𝑣 𝑒(t) 

𝐽 (t+dt) 
𝑣 𝑒(t+dt) 𝑣 𝑖(t)~ 𝑣 𝑖(t+dt) 

𝑞𝑒⁢𝑛𝑒  omitted 
for all figures 



The⁢generalized⁢Ohm’s⁢law⁢– Review 
The⁢generalized⁢Ohm’s⁢law⁢reads⁢as⁢: 

𝜕 𝐽 

𝜕𝑡
= −
𝑞𝑒
𝑚𝑒
⁢𝛻 · 𝑃
 
𝑒 +
𝑛𝑒⁢𝑞𝑒

2

𝑚𝑒
⁢ 𝐸 + 𝑣 × 𝐵 +

𝑞𝑒
𝑚𝑒
⁢ 𝐽 × 𝐵 −

𝑛𝑒 ⁢𝑞𝑒
2

𝑚𝑒
⁢𝜂 · 𝐽  

 
In simple language, it simply says:  

What are the different ways we can cause the current to change?  
𝜕 𝐽 

𝜕𝑡
= ⋯ 

2. The collision term −
𝑛𝑒⁢𝑞𝑒

2

𝑚𝑒
⁢𝜂 · 𝐽  

Again, similar to the pressure gradient term, forces mainly affect the velocity of 
electrons. 

𝐽 (t) 

𝑣 𝑖(t)~ 𝑣 𝑖(t+dt) 𝑣 𝑒(t) 

𝐽 (t+dt) 
𝑣 𝑒(t+dt) 𝑣 𝑖(t)~ 𝑣 𝑖(t+dt) 



The⁢generalized⁢Ohm’s⁢law⁢– Review 
The⁢generalized⁢Ohm’s⁢law⁢reads⁢as⁢: 

𝜕 𝐽 

𝜕𝑡
= −
𝑞𝑒
𝑚𝑒
⁢𝛻 · 𝑃
 
𝑒 +
𝑛𝑒⁢𝑞𝑒

2

𝑚𝑒
⁢ 𝐸 + 𝑣 × 𝐵 +

𝑞𝑒
𝑚𝑒
⁢ 𝐽 × 𝐵 −

𝑛𝑒 ⁢𝑞𝑒
2

𝑚𝑒
⁢𝜂 · 𝐽  

 
In simple language, it simply says:  

What are the different ways we can cause the current to change?  
𝜕 𝐽 

𝜕𝑡
= ⋯ 

3. The Electric field term 
𝑛𝑒⁢𝑞𝑒

2

𝑚𝑒
⁢𝐸  

This again is because that a given electric field will mainly accelerate electrons. 

𝐽 (t) 

𝑣 𝑖(t)~ 𝑣 𝑖(t+dt) 𝑣 𝑒(t) 

𝐽 (t+dt) 
𝑣 𝑒(t+dt) 𝑣 𝑖(t)~ 𝑣 𝑖(t+dt) 



The⁢generalized⁢Ohm’s⁢law⁢– Review 
The⁢generalized⁢Ohm’s⁢law⁢reads⁢as⁢: 

𝜕 𝐽 

𝜕𝑡
= −
𝑞𝑒
𝑚𝑒
⁢𝛻 · 𝑃
 
𝑒 +
𝑛𝑒⁢𝑞𝑒

2

𝑚𝑒
⁢ 𝐸 + 𝑣 × 𝐵 +

𝑞𝑒
𝑚𝑒
⁢ 𝐽 × 𝐵 −

𝑛𝑒 ⁢𝑞𝑒
2

𝑚𝑒
⁢𝜂 · 𝐽  

 
In simple language, it simply says:  

What are the different ways we can cause the current to change?  
𝜕 𝐽 

𝜕𝑡
= ⋯ 

4. The plasma motion term 
𝑛𝑒⁢𝑞𝑒

2

𝑚𝑒
𝑣 × 𝐵  

As we mentioned earlier, the plasma bulk velocity mainly follows that of 
protons, thus this term tells us the change in current due to protons deflected 
by B field. 

𝐽 (t) 

𝑣 𝑖(t) 𝑣 𝑒(t) 

𝐵  

𝑣 𝑖(t) × 𝐵  

𝐽 (t+dt) 

𝑣 𝑖(t+dt) 

𝑣 𝑒(t) 

𝐵  

𝑣 𝑖(t+dt) × 𝐵  

𝑣 𝑖(t) 

𝐽 (t) 



The⁢generalized⁢Ohm’s⁢law⁢– Review 
The⁢generalized⁢Ohm’s⁢law⁢reads⁢as⁢: 

𝜕 𝐽 

𝜕𝑡
= −
𝑞𝑒
𝑚𝑒
⁢𝛻 · 𝑃
 
𝑒 +
𝑛𝑒⁢𝑞𝑒

2

𝑚𝑒
⁢ 𝐸 + 𝑣 × 𝐵 +

𝑞𝑒
𝑚𝑒
⁢ 𝐽 × 𝐵 −

𝑛𝑒 ⁢𝑞𝑒
2

𝑚𝑒
⁢𝜂 · 𝐽  

 
In simple language, it simply says:  

What are the different ways we can cause the current to change?  
𝜕 𝐽 

𝜕𝑡
= ⋯ 

5. The Hall effect term 
𝑞𝑒

𝑚𝑒
⁢ 𝐽 × 𝐵  

This term is slightly more complicated, it contains 𝐽 , which 
means that both rotation of electron velocity and ion velocity 
contribute. (It is that Hall effect which is commonly used to 
determine semiconductor type) 

𝐽 (t) 

𝑣 𝑖(t) 𝑣 𝑒(t) 

𝐵  

𝑣 𝑖(t) × 𝐵  − 𝑣 𝑒(t) × 𝐵  

𝐽 (t) 

𝑣 𝑖(t) 𝑣 𝑒(t) 

𝐵  

𝑣 𝑖(t+dt) 
𝑣 𝑒(t+dt) 

𝐽 (t+dt) 



The⁢generalized⁢Ohm’s⁢law 
Slightly⁢modified,⁢the⁢generalized⁢Ohm’s⁢law⁢reads⁢as⁢: 

𝜕 𝐽 

𝜕𝑡
+
𝑞𝑒
𝑚𝑒
⁢𝛻 · 𝑃
 
𝑒 =
𝑛𝑒⁢𝑞𝑒

2

𝑚𝑒
⁢ 𝐸 + 𝑣 × 𝐵 +

𝑞𝑒
𝑚𝑒
⁢ 𝐽 × 𝐵 −

𝑛𝑒⁢𝑞𝑒
2

𝑚𝑒
⁢𝜂 · 𝐽  

Now, the fully General Relativistic version: 
 

𝛻𝛼𝐶
αβ =
𝜔𝑝
2

4⁢𝜋
⁢
1

𝑐
⁢ 𝑈𝛼 + ℎ𝑞⁢𝔍𝛼 ⁢𝐹

αβ − 𝜂𝑞 ⁢ 𝜌𝑞⁢𝑈
𝛽 + 𝔍𝛽  

𝐶αβ ≡ 𝜌𝑞 +
𝜀𝑞 + 𝑝𝑞
𝑐2

⁢𝑈𝛼⁢𝑈𝛽 + 𝑈𝛼⁢ 𝔍′ 𝛽 + 𝔍′ 𝛼⁢𝑈𝛽 + 𝑝𝑞⁢𝑔
αβ 

 
In the rest frame of the fluid, it reads as  

𝐶αβ =

𝜌𝑞 +
𝜀𝑞
𝑐2

𝔍′ 𝑥 𝔍′ 𝑦 𝔍′ 𝑧

𝔍′ 𝑥 𝑝𝑞 0 0

𝔍′ 𝑦 0 𝑝𝑞 0

𝔍′ 𝑧 0 0 𝑝𝑞

 

WTH OK…⁢I⁢have⁢to⁢admit,⁢my⁢first⁢response⁢to⁢this⁢was⁢… 



The⁢generalized⁢Ohm’s⁢law 

1

𝑐
⁢ 𝑈𝛼 + ℎ𝑞 ⁢𝔍𝛼 ⁢𝐹

αβ = 1,−ℎ𝑞 ⁢
𝔍𝑥
𝑐
, −ℎ𝑞 ⁢
𝔍𝑦
𝑐
, −ℎ𝑞 ⁢
𝔍𝑧
𝑐
⁢

0 𝐸𝑥 𝐸𝑦 𝐸𝑧
−𝐸𝑥 0 𝐵𝑧 −𝐵𝑦
−𝐸𝑦 −𝐵𝑧 0 𝐵𝑥
−𝐸𝑧 𝐵𝑦 −𝐵𝑥 0

=

ℎ𝑞
𝑐
⁢ 𝔍
 
· 𝐸 

𝐸𝑥 +
ℎ𝑞
𝑐
⁢ 𝔍𝑦⁢𝐵𝑧 − 𝔍𝑧⁢𝐵𝑦

𝐸𝑦 +
ℎ𝑞
𝑐
⁢ 𝔍𝑧⁢𝐵𝑥 − 𝔍𝑥⁢𝐵𝑧

𝐸𝑧 +
ℎ𝑞
𝑐
⁢ 𝔍𝑥⁢𝐵𝑦 − 𝔍𝑦⁢𝐵𝑥

 

=

ℎ𝑞
𝑐
⁢ 𝔍
 
· 𝐸 

𝐸 +
ℎ𝑞
𝑐
𝔍
 
× 𝐵 

𝑥

𝐸 +
ℎ𝑞
𝑐
𝔍
 
× 𝐵 

𝑦

𝐸 +
ℎ𝑞
𝑐
𝔍
 
× 𝐵 

𝑧

 

𝜂𝑞 ⁢ 𝜌𝑞⁢𝑈
𝛽 + 𝔍𝛽 = 𝜂𝑞⁢

𝜌𝑞⁢𝑐

𝔍𝑥
𝔍𝑦
𝔍𝑧

 

𝛻𝛼𝐶
αβ =
𝜔𝑝
2

4⁢𝜋
⁢
1

𝑐
⁢ 𝑈𝛼 + ℎ𝑞 ⁢𝔍𝛼 ⁢𝐹

αβ − 𝜂𝑞⁢ 𝜌𝑞⁢𝑈
𝛽 + 𝔍𝛽  

 

𝐶αβ ≡ 𝜌𝑞 +
𝜀𝑞 + 𝑝𝑞
𝑐2

⁢𝑈𝛼⁢𝑈𝛽 + 𝑈𝛼⁢ 𝔍′ 𝛽 + 𝔍′ 𝛼⁢𝑈𝛽 + 𝑝𝑞⁢𝑔
αβ 



The⁢generalized⁢Ohm’s⁢law 

𝛻𝛼𝐶
αβ =
𝜔𝑝
2

4⁢𝜋
⁢
1

𝑐
⁢ 𝑈𝛼 + ℎ𝑞 ⁢𝔍𝛼 ⁢𝐹

αβ − 𝜂𝑞⁢ 𝜌𝑞⁢𝑈
𝛽 + 𝔍𝛽  

 

𝐶αβ ≡ 𝜌𝑞 +
𝜀𝑞 + 𝑝𝑞
𝑐2

⁢𝑈𝛼⁢𝑈𝛽 + 𝑈𝛼⁢ 𝔍′ 𝛽 + 𝔍′ 𝛼⁢𝑈𝛽 + 𝑝𝑞⁢𝑔
αβ 

𝛻𝛼𝐶
αβ =

𝜕

𝜕𝑡
,
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
⁢

𝜌𝑞 +
𝜀𝑞

𝑐2
𝔍′ 𝑥 𝔍′ 𝑦 𝔍′ 𝑧

𝔍′ 𝑥 𝑝𝑞 0 0

𝔍′ 𝑦 0 𝑝𝑞 0

𝔍′ 𝑧 0 0 𝑝𝑞

=

𝜕

𝜕𝑡
𝜌𝑞 +
𝜀𝑞

𝑐2
+ 𝛻 · 𝔍

 
′

𝜕 𝔍′ 𝑥

𝜕𝑡
+
𝜕𝑝𝑞

𝜕𝑥
𝜕 𝔍′ 𝑦

𝜕𝑡
+
𝜕𝑝𝑞

𝜕𝑦

𝜕 𝔍′ 𝑧

𝜕𝑡
+
𝜕𝑝𝑞

𝜕𝑧

=

𝜕

𝜕𝑡
𝜌𝑞 +
𝜀𝑞

𝑐2
+ 𝛻 · 𝔍

 
′

𝜕𝔍′

𝜕𝑡
+ 𝛻𝑝𝑔

𝑥

𝜕𝔍′

𝜕𝑡
+ 𝛻𝑝𝑔

𝑦

𝜕𝔍′

𝜕𝑡
+ 𝛻𝑝𝑔

𝑧

 



The⁢generalized⁢Ohm’s⁢law— 
putting it together 

𝜕

𝜕𝑡
𝜌𝑞 +
𝜀𝑞

𝑐2
+ 𝛻 · 𝔍

 
′

𝜕𝔍′

𝜕𝑡
+ 𝛻𝑝𝑔

𝑥

𝜕𝔍′

𝜕𝑡
+ 𝛻𝑝𝑔

𝑦

𝜕𝔍′

𝜕𝑡
+ 𝛻𝑝𝑔

𝑧

=
𝜔𝑝
2

4⁢𝜋
⁢

ℎ𝑞

𝑐
⁢ 𝔍
 
· 𝐸 − 𝜂𝑞 ⁢𝜌𝑞 ⁢𝑐

𝐸 +
ℎ𝑞

𝑐
𝔍
 
× 𝐵 

𝑥

− 𝜂𝑞 ⁢𝔍
𝑥

𝐸 +
ℎ𝑞

𝑐
𝔍
 
× 𝐵 

𝑦

− 𝜂𝑞 ⁢𝔍
𝑦

𝐸 +
ℎ𝑞

𝑐
𝔍
 
× 𝐵 
 𝑧

− 𝜂𝑞 ⁢𝔍
𝑧

 

𝜕 𝐽 

𝜕𝑡
+
𝑞𝑒
𝑚𝑒
⁢𝛻 · 𝑃
 
𝑒 =
𝑛𝑒⁢𝑞𝑒

2

𝑚𝑒
⁢ 𝐸 + 𝑣 × 𝐵 +

𝑞𝑒
𝑚𝑒
⁢ 𝐽 × 𝐵 −

𝑛𝑒⁢𝑞𝑒
2

𝑚𝑒
⁢𝜂 · 𝐽  

The GR version of the 
generalized⁢Ohm’s⁢
law⁢in⁢the⁢“Local⁢
frame⁢of⁢the⁢fluid” 

The generalized 
Ohm’s⁢law⁢in⁢
classical theory. 

𝛻𝛼𝐶
αβ =
𝜔𝑝
2

4⁢𝜋
⁢
1

𝑐
⁢ 𝑈𝛼 + ℎ𝑞 ⁢𝔍𝛼 ⁢𝐹

αβ − 𝜂𝑞⁢ 𝜌𝑞⁢𝑈
𝛽 + 𝔍𝛽  

𝐶αβ ≡ 𝜌𝑞 +
𝜀𝑞 + 𝑝𝑞
𝑐2

⁢𝑈𝛼⁢𝑈𝛽 + 𝑈𝛼⁢ 𝔍′ 𝛽 + 𝔍′ 𝛼⁢𝑈𝛽 + 𝑝𝑞⁢𝑔
αβ 

I have no idea what 
these⁢two⁢terms⁢mean… 

In the local 
frame, 𝑣 = 0 

Plasma motion Hall Resistive Pressure  
Gradient 



Comparison with the 3D version 
𝜕 𝐽 

𝜕𝑡
+
𝑞𝑒
𝑚𝑒
⁢𝛻 · 𝑃
 
𝑒 =
𝑛𝑒⁢𝑞𝑒

2

𝑚𝑒
⁢ 𝐸 + 𝑣 × 𝐵 +

𝑞𝑒
𝑚𝑒
⁢ 𝐽 × 𝐵 −

𝑛𝑒⁢𝑞𝑒
2

𝑚𝑒
⁢𝜂 · 𝐽  

In a general frame, the 𝑣 × 𝐵  term comes back.  

Convective terms that were ignored in Plasma class. 



The⁢terms⁢in⁢the⁢Generalized⁢Ohm’s⁢Law 
𝜕

𝜕𝑡
𝜌𝑞 +
𝜀𝑞
𝑐2
+ 𝛻 · 𝔍

 
′

𝜕𝔍′

𝜕𝑡
+ 𝛻𝑝𝑔

𝑥

𝜕𝔍′

𝜕𝑡
+ 𝛻𝑝𝑔

𝑦

𝜕𝔍′

𝜕𝑡
+ 𝛻𝑝𝑔

𝑧

=
𝜔𝑝
2

4⁢𝜋
⁢

ℎ𝑞
𝑐
⁢ 𝔍
 
· 𝐸 − 𝜂𝑞 ⁢𝜌𝑞 ⁢𝑐

𝐸 +
ℎ𝑞
𝑐
𝔍
 
× 𝐵 

𝑥

− 𝜂𝑞 ⁢𝔍
𝑥

𝐸 +
ℎ𝑞
𝑐
𝔍
 
× 𝐵 

𝑦

− 𝜂𝑞 ⁢𝔍
𝑦

𝐸 +
ℎ𝑞
𝑐
𝔍
 
× 𝐵 
 𝑧

− 𝜂𝑞 ⁢𝔍
𝑧

 

The GR version of the 
generalized⁢Ohm’s⁢
law⁢in⁢the⁢“Local⁢
frame⁢of⁢the⁢fluid” 

Spatial current      𝔍
 
≡ 𝛴
𝑖
⁢𝑞𝑖⁢ 𝑣 ⁢𝑓⁢ 𝑣 ⁢𝑑

3⁢𝑣  

Lorentz enhanced version of the spatial current  𝔍
 ′
≡ 𝛴
𝑖
⁢𝑞𝑖 ⁢ 𝛾⁢𝑣 ⁢𝑓⁢ 𝑣 ⁢𝑑

3⁢𝑣  



The⁢terms⁢in⁢the⁢Generalized⁢Ohm’s⁢Law 
𝜕

𝜕𝑡
𝜌𝑞 +
𝜀𝑞
𝑐2
+ 𝛻 · 𝔍

 
′

𝜕𝔍′

𝜕𝑡
+ 𝛻𝑝𝑔

𝑥

𝜕𝔍′

𝜕𝑡
+ 𝛻𝑝𝑔

𝑦

𝜕𝔍′

𝜕𝑡
+ 𝛻𝑝𝑔

𝑧

=
𝜔𝑝
2

4⁢𝜋
⁢

ℎ𝑞
𝑐
⁢ 𝔍
 
· 𝐸 − 𝜂𝑞 ⁢𝜌𝑞 ⁢𝑐

𝐸 +
ℎ𝑞
𝑐
𝔍
 
× 𝐵 

𝑥

− 𝜂𝑞 ⁢𝔍
𝑥

𝐸 +
ℎ𝑞
𝑐
𝔍
 
× 𝐵 

𝑦

− 𝜂𝑞 ⁢𝔍
𝑦

𝐸 +
ℎ𝑞
𝑐
𝔍
 
× 𝐵 
 𝑧

− 𝜂𝑞 ⁢𝔍
𝑧

 

The GR version of the 
generalized⁢Ohm’s⁢
law⁢in⁢the⁢“Local⁢
frame⁢of⁢the⁢fluid” 

Plasma frequency      𝜔𝑝
2 ≡ 4⁢𝜋⁢𝛴

𝑖
⁢
𝑞𝑖
2⁢𝑛𝑖

𝑚𝑖
≈ 4⁢𝜋⁢

𝑛𝑒⁢𝑒
2

𝑚𝑒
 

Hall coefficient      ℎ𝑞 ≡
4⁢𝜋

𝜔𝑝
2 |𝔍 |
⁢𝛴
𝑖
⁢
𝑞𝑖

𝑚𝑖
| 𝔍
 
𝑖 | ≈

1

𝑛𝑒⁢𝑒
 

Resistivity      𝜂𝑞 ≡ 4⁢𝜋⁢
𝜈coll

𝜔𝑝
2  

These terms can be determined through the equation of states: 
 
  𝜀𝑞 ⁢= 𝜀𝑞 ⁢ 𝜌, 𝑇  𝑝𝑞⁢= 𝑝𝑞⁢ 𝜌, 𝑇  

  ⁢𝜔𝑝⁢= 𝜔𝑝⁢ 𝜌, 𝑇  ⁢ℎ𝑞⁢= ℎ𝑞⁢ 𝜌, 𝑇  
  ⁢𝜂𝑞 = 𝜂𝑞 𝜌, 𝑇  



Full stress-energy tensor for gas 
𝑇αβgas = 𝑇

αβ
fluid + 𝑇

αβ
Conduction + 𝑇

αβ
Viscosity

= 𝜌 + p +
𝜀

𝑐2
⁢𝑈𝛼 ⁢𝑈𝛽 + 𝑔αβ⁢𝑝 +

1

𝑐2
⁢ 𝑄𝑔
𝛼 ⁢𝑈𝛽 + 𝑈𝛼 ⁢𝑄𝑔

𝛽
+ −2⁢𝜂𝑣,𝑔⁢𝛴

αβ − 𝜁𝑣,𝑔⁢𝛩⁢𝑃
αβ  

𝑇αβ
fluid
=

𝜌 + 𝜀 0 0 0
0 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝

 𝑇αβ
Conduction

=

0 𝑄𝑔
𝑥 𝑄𝑔

𝑦
𝑄𝑔
𝑧

𝑄𝑔
𝑥 0 0 0

𝑄𝑔
𝑦
0 0 0

𝑄𝑔
𝑧 0 0 0

 

𝑇αβ
Viscosity

=

0 0 0 0
0 −2⁢𝜂𝑣,𝑔⁢𝛴

xx − 𝜁𝑣,𝑔⁢𝛩 −2⁢𝜂𝑣,𝑔⁢𝛴
xy −2⁢𝜂𝑣,𝑔⁢𝛴

xz

0 −2⁢𝜂𝑣,𝑔⁢𝛴
yx −2⁢𝜂𝑣,𝑔⁢𝛴

yy − 𝜁𝑣,𝑔⁢𝛩 −2⁢𝜂𝑣,𝑔⁢𝛴
yz

0 −2⁢𝜂𝑣,𝑔⁢𝛴
zx −2⁢𝜂𝑣,𝑔⁢𝛴

zy −2⁢𝜂𝑣,𝑔⁢𝛴
zz − 𝜁𝑣,𝑔⁢𝛩

 

𝑇αβ
gas
=

ρc2 + 𝜀𝑔 𝑄𝑔
𝑥 𝑄𝑔

𝑦
𝑄𝑔
𝑧

𝑄𝑔
𝑥 −2⁢𝜂𝑣,𝑔⁢𝛴

xx − 𝜁𝑣,𝑔⁢𝛩 + 𝑝𝑔 −2⁢𝜂𝑣,𝑔⁢𝛴
xy −2⁢𝜂𝑣,𝑔⁢𝛴

xz

𝑄𝑔
𝑦

−2⁢𝜂𝑣,𝑔⁢𝛴
yx −2⁢𝜂𝑣,𝑔⁢𝛴

yy − 𝜁𝑣,𝑔⁢𝛩 + 𝑝𝑔 −2⁢𝜂𝑣,𝑔⁢𝛴
yz

𝑄𝑔
𝑧 −2⁢𝜂𝑣,𝑔⁢𝛴

zx −2⁢𝜂𝑣,𝑔⁢𝛴
zy −2⁢𝜂𝑣,𝑔⁢𝛴

zz − 𝜁𝑣,𝑔⁢𝛩 + 𝑝𝑔

 



Structure similarity with the energy-
momentum tensor 

𝛻𝛼𝐶
αβ =
𝜔𝑝
2

4⁢𝜋
⁢
1

𝑐
⁢ 𝑈𝛼 + ℎ𝑞⁢𝔍𝛼 ⁢𝐹

αβ − 𝜂𝑞 ⁢ 𝜌𝑞⁢𝑈
𝛽 + 𝔍𝛽  

𝐶αβ ≡ 𝜌𝑞 +
𝜀𝑞 + 𝑝𝑞
𝑐2

⁢𝑈𝛼⁢𝑈𝛽 + 𝑈𝛼⁢ 𝔍′ 𝛽 + 𝔍′ 𝛼⁢𝑈𝛽 + 𝑝𝑞⁢𝑔
αβ 

In the rest frame of the fluid, 𝐶αβ =

𝜌𝑞 +
𝜀𝑞

𝑐2
𝔍′ 𝑥 𝔍′ 𝑦 𝔍′ 𝑧

𝔍′ 𝑥 𝑝𝑞 0 0

𝔍′ 𝑦 0 𝑝𝑞 0

𝔍′ 𝑧 0 0 𝑝𝑞

 

𝑇αβ
gas
=

ρc2 + 𝜀𝑔 𝑄𝑔
𝑥 𝑄𝑔

𝑦
𝑄𝑔
𝑧

𝑄𝑔
𝑥 −2⁢𝜂𝑣,𝑔⁢𝛴

xx − 𝜁𝑣,𝑔⁢𝛩 + 𝑝𝑔 −2⁢𝜂𝑣,𝑔⁢𝛴
xy −2⁢𝜂𝑣,𝑔⁢𝛴

xz

𝑄𝑔
𝑦

−2⁢𝜂𝑣,𝑔⁢𝛴
yx −2⁢𝜂𝑣,𝑔⁢𝛴

yy − 𝜁𝑣,𝑔⁢𝛩 + 𝑝𝑔 −2⁢𝜂𝑣,𝑔⁢𝛴
yz

𝑄𝑔
𝑧 −2⁢𝜂𝑣,𝑔⁢𝛴

zx −2⁢𝜂𝑣,𝑔⁢𝛴
zy −2⁢𝜂𝑣,𝑔⁢𝛴

zz − 𝜁𝑣,𝑔⁢𝛩 + 𝑝𝑔

 



How do we solve them? 
For⁢simplicity,⁢let’s⁢look⁢at⁢the⁢local⁢frame⁢of⁢the⁢fluid.⁢The⁢generalized⁢Ohm’s⁢law⁢
then looks like: 

These three equations allow us to take a time step for 𝔍′.  

𝜕

𝜕𝑡
𝜌𝑞 +
𝜀𝑞

𝑐2
+ 𝛻 · 𝔍

 
′

𝜕𝔍′

𝜕𝑡
+ 𝛻𝑝𝑔

𝑥

𝜕𝔍′

𝜕𝑡
+ 𝛻𝑝𝑔

𝑦

𝜕𝔍′

𝜕𝑡
+ 𝛻𝑝𝑔

𝑧

=
𝜔𝑝
2

4⁢𝜋
⁢

ℎ𝑞

𝑐
⁢ 𝔍
 
· 𝐸 − 𝜂𝑞 ⁢𝜌𝑞 ⁢𝑐

𝐸 +
ℎ𝑞

𝑐
𝔍
 
× 𝐵 

𝑥

− 𝜂𝑞 ⁢𝔍
𝑥

𝐸 +
ℎ𝑞

𝑐
𝔍
 
× 𝐵 

𝑦

− 𝜂𝑞 ⁢𝔍
𝑦

𝐸 +
ℎ𝑞

𝑐
𝔍
 
× 𝐵 
 𝑧

− 𝜂𝑞 ⁢𝔍
𝑧

 

This equation allows us to determine 𝛾𝑞. (How?)  

𝔍
 
′ = 𝛾𝑞⁢𝔍

 
 helps us to find 𝔍

 
 and 𝑈𝛼⁢𝔍𝛼 = 0 helps to find 𝔍𝛼⁢ 

Then from charge continuity, 𝛻𝛼𝐽
𝛼 = 0 and 𝐽𝛼 = 𝜌𝑞⁢𝑈

𝛼 + 𝔍𝛼 we can update 𝜌𝑞. 

With the new 4-current,⁢we⁢can⁢update⁢the⁢fields⁢using⁢Maxwell’s⁢equations. 



Relativistic Hall MHD 
The⁢generalized⁢Ohm’s⁢law⁢reads⁢as: 

𝛻𝛼𝐶
αβ =
𝜔𝑝
2

4⁢𝜋
⁢
1

𝑐
⁢ 𝑈𝛼 + ℎ𝑞 ⁢𝔍𝛼 ⁢𝐹

αβ − 𝜂𝑞⁢ 𝜌𝑞⁢𝑈
𝛽 + 𝔍𝛽  

 

However, in most cases, 
𝜔𝑝
2

4⁢𝜋
 is very large that we can forget about the 𝛻𝛼𝐶

αβ term. 

This reduces the equation to  
1

𝑐
⁢ 𝑈𝛼 + ℎ𝑞 ⁢𝔍𝛼 ⁢𝐹

αβ = 𝜂𝑞 ⁢ 𝜌𝑞⁢𝑈
𝛽 + 𝔍𝛽  

In which we find that the beamed current (𝔍′)𝛽 is gone (it is in the 𝐶αβ term) 
 
Therefore, we no longer need 𝛾𝑞 .⁢This⁢in⁢turn⁢means⁢that⁢the⁢‘t’⁢component⁢of⁢the⁢

Ohm’s⁢law⁢which⁢was⁢used⁢to⁢determine⁢𝛾𝑞 now is useless. 

 

To simplify, we can project out the spatial current 𝔍𝛽: 
𝑈𝛼
𝑐
⁢𝐹αβ + ℎ𝑞⁢

𝔍𝛾

𝑐
⁢𝐹αβ⁢𝑃γα = 𝜂𝑞⁢𝔍

𝛽 

 

In non-relativistic case,⁢it’s⁢simply⁢𝐸 + ℎ𝑞⁢
𝐽 

𝑐
× 𝐵 = 𝜂𝑞⁢ 𝐽

  



Relativistic Resistive MHD 

Another simplification that is often used it to  drop the Hall term in the following 
equation we got just now: 

𝑈𝛼
𝑐
⁢𝐹αβ + ℎ𝑞 ⁢

𝔍𝛾

𝑐
⁢𝐹αβ⁢𝑃γα = 𝜂𝑞⁢𝔍

𝛽 

Hall term 

By comparing the Hall and resistive(collision) terms,  

ℎ𝑞|𝔍
𝛼|| 𝐵 |/𝑐

𝜂𝑞|𝔍
𝛼|

≈
eB

𝑚𝑒⁢𝑐
⁢
1

𝜈coll
=
𝜈𝐿
𝜈coll
⁢<< 1 

 

we can argue that since many collisions can occur within a Larmor orbit, the 
𝐽 

𝑐
× 𝐵  

term⁢will⁢not⁢contribute⁢much…???????? 
 

Plugging⁢in⁢the⁢numbers⁢gives… 
νL = 1.76 × 10

7B for⁢B~1mG,⁢this⁢is⁢of⁢order⁢10000…. 

νcoll =
3.41

T3 2 
n for T~108, n~1015 this⁢is⁢of⁢order⁢1000… 

What the hell happened with the ratio!? 



Relativistic Ideal MHD 
The last simplification to make is to consider dropping off the resistive term.  

𝑈𝛼
𝑐
⁢𝐹αβ = 𝜂𝑞 ⁢𝔍

𝛽⁢ 

We estimate the conductivity as follows 𝑉th ≈
kT

𝑚𝑒
; 𝑟𝑒 =

𝑒2

kT
: 

 

𝜎𝑞 ≡
1

𝜂𝑞
=
𝜔𝑝
2

4⁢πνcoll
≈
𝑛𝑒⁢𝑒
2

𝑚𝑒
⁢

1

𝑛𝑒⁢ πr𝑒
2 ⁢𝑉th

≈
2⁢kT

3
2

πe2⁢ 𝑚𝑒
~2.1 × 108⁢𝑠−1⁢𝑇1.5 

 
 
For 𝑇 = 106~1010𝐾, this gives 𝜎𝑞 = 10

17~1023 𝑠−1 >>5 × 1016 for copper! 

  
Given the extreme lack of electrical resistance in astrophysical plasmas, one 
can safely ignore the resistivity term, leading to⁢the⁢simple⁢“ideal”⁢Ohm’s⁢law⁢
expression 

𝑈𝛼
𝑐
⁢𝐹αβ = 0 



Relativistic Ideal MHD 

In the non-relativistic limit and evaluating in the lab frame, 
Uα

c
⁢Fαβ = 0 becomes 

𝐸 = −
𝑣 

𝑐
× 𝐵  which⁢is⁢the⁢familiar⁢ideal⁢Ohm’s⁢law⁢expression. 

I personally think that it should not only be Ideal MHD that deserves this comment, 

starting from the step when we dropped off the 
𝜕 𝐽 

𝜕𝑡
 term to get the Hall-MHD, it 

becomes⁢basically⁢impossible⁢to⁢directly⁢update⁢the⁢current… 



Flux freezing in actual simulations 



Optically thin Radiative Emission (Ch9.4) 



matter matter 

Optically thin radiation heat 
transfer –an Introduction 

Synchrotron Emission 

Bremsstrahlung Inverse Compton 

Previously, we discuss the heat transfer by 
radiation by considering the opacity, which 
means⁢that⁢we’re⁢considering⁢radiation⁢
transferring heat within the system – being 
eaten or scattered within the system.  Ow! 

Ahhhh… 

Now we consider photons that are allowed to escape the 
system and thereby carrying energy with them. And the 
spectrum remains approximately that of the emission 
process. 

𝑞
.

𝑟 =
1

𝜌
⁢𝛻 · 𝑄 𝑟 = −

𝑐

3⁢𝜌
⁢𝛻 ·
𝛻𝜀𝑟

𝜅
−

𝑅,bf

 

We discuss the following processes: 

Absroption 

Scattering 



The BIG assumption 

We consider the different types of emission 
radiated from a thermal distribution of particles! 

(For example, Maxwellian for a classical gas) 

𝑝2⁢𝑒
−
𝑝2

2⁢𝑚0⁢kT 



Bremsstrahlung (Free-Free Emission) 

𝑒−⁢−𝑖𝑜𝑛; 𝑒+ − ion 

𝑒−⁢𝑒−; 𝑒+⁢𝑒+ 

𝑒−⁢𝑒+ 

How do we understand 
these trends in a simpler 
manner? 



Bremsstrahlung (Free-Free Emission) 

+ 

b 

𝑣𝑖 

𝑣𝑓 

𝑣𝑖 

Δv 

For the low frequency waves, the interaction 
time is much shorter than the inverse of its 
frequency. Thus, these waves will be coherent 
with those emitted a small time ago of the 
same frequency. 
 

This leads to  
dE

dω
∝ Δv2 

𝜔cut~
𝑣

𝑏
 

Assuming⁢that⁢the⁢v⁢magnitude⁢doesn’t⁢change⁢much,⁢

then the time that the charge takes to fly past is 𝜏~
𝑏

𝑣
. 

The emitted frequency (being the Fourier transform 

of time) therefore would have a cut off at 𝜔cut~
𝑣

𝑏
. 

𝜏~
𝑏

𝑣
 

Constructive! 



Bremsstrahlung (Free-Free Emission) 

+ 

b 

𝑣𝑖 

𝑣𝑓 

𝑣𝑖 

Δv 

dE

dω
∝ Δv2 Now, we can estimate the change in velocity Δv by 

integrating over the acceleration history of the 
particle 

Δv =
Ze2

𝑚
⁢ 

𝑏⁢dt

𝑏2+ vt 2
3

∞

−∞

=
2⁢𝑍⁢𝑒2

𝑚⁢𝑏⁢𝑣
∝
1

𝑚⁢𝑏⁢𝑣
  

 

This gives  
dE

dω
∝

1

𝑚2⁢𝑏2⁢𝑣2
 

Since in astrophysics, there are usually a large number of particles, we now 
consider a flux of particles shooting at stationary targets. 

𝑛𝑖  𝑛𝑡 The emitted power per unit volume per unit 
frequency is then 
dE

dωdVdt
∝  

1

𝑚2⁢𝑏2⁢𝑣2
𝑛𝑡⁢ 𝑛𝑖 ⁢𝑣 ⁢ 2⁢𝜋⁢𝑏⁢db

𝑏max

𝑏min

 

Number of incident particles per unit 
time at a particular impact parameter 



Thermal Bremsstrahlung 
dE

dωdVdt
∝  

1

𝑚2⁢𝑏2⁢𝑣2
[𝑛𝑡⁢ 𝑛𝑖 ⁢𝑣 ⁢ 2⁢𝜋⁢𝑏⁢db  

𝑏max

𝑏min

∝
𝑛𝑡⁢𝑛𝑖
𝑚2⁢𝑣
⁢ℓn⁢
𝑏max
𝑏min

 

Gaunt factor (𝑔
−

), in general some 
complicated function of order unity. 

𝑝2⁢𝑒
−
𝑝2

2⁢𝑚0⁢kT 

For a thermal population of particles, for a quick 
estimate, we can characterized the velocity by the 
thermal velocity 

𝑣th ∝
𝑇

𝑚
 

which gives  
dE

dωdVdt
∝
𝑛𝑡⁢𝑛𝑖

𝑚1.5⁢ 𝑇
⁢𝑔
−

 



Thermal Bremsstrahlung—total power 

𝜔cut~
𝑣

𝑏
 

dE

dVdt
=  

dE

dωdVdt
⁢dω ∝  

𝑛𝑡⁢𝑛𝑖

𝑚1.5⁢ 𝑇
⁢𝑔
−
⁢dω 

𝑏min
2
∝
1

mv2
→
𝑣

𝑏min
2
∝ mv3 ∝

𝑇1.5

𝑚
 

≈
𝑛𝑡⁢𝑛𝑖

𝑚1.5⁢ 𝑇
⁢𝑔
−
⁢𝜔cut 

Using the fact that the spectra can be 
approximated by a box function, 

For 𝜔cut,⁢the⁢‘b’⁢that⁢gives⁢the⁢highest⁢
frequency is obviously the smallest b, i.e. 
𝑏min. 
 
Here, we can have two cases: 
 
1. The emitting particles have less energy 
and a large portion is radiated. 

𝑏min
1
=
ℎ

mv
→
𝑣

𝑏min
1
∝
mv2

ℎ
∝
𝑇

ℎ
 

 
2. The emitting particles are very energetic 
and only give away a small portion of their 
kinetic energy to radiation. 

This idea works but seems slightly incompatible to 
the picture given in Rybicki & Lightman p158… 



Thermal Bremsstrahlung—total power 

Power per unit volume 
dE

dVdt
≈
𝑛𝑡⁢𝑛𝑖

𝑚1.5⁢ 𝑇
⁢𝑔
−
⁢𝜔cut 

1. The emitting particles have less 
energy and a large portion is 
radiated. 
 

𝑏min
1
=
ℎ

mv
→
𝑣

𝑏min
1
∝
mv2

ℎ
∝
𝑇

ℎ
 

 
Power per unit volume: 

dE

dVdt
∝
𝑛𝑡⁢𝑛𝑖
ℎ⁢𝑚1.5

⁢ 𝑇⁢𝑔
−

 

 
Power per unit mass: 

dE

dt⁢dmtot
∝
1

𝑚𝑝⁢𝑛𝑝
⁢
𝑛𝑡⁢𝑛𝑖
ℎ⁢𝑚1.5

⁢ 𝑇⁢𝑔
−

 

 

2. The emitting particles are very 
energetic and only give away a small 
portion of their kinetic energy to 
radiation. 
 

𝑏min
2
∝
1

mv2
→
𝑣

𝑏min
2
∝ mv3 ∝

𝑇1.5

𝑚
 

 
Power per unit volume: 

dE

dVdt
∝
𝑛𝑡⁢𝑛𝑖
𝑚2
⁢𝑇⁢𝑔
−

 

 
Power per unit mass: 

dE

dt⁢dmtot
∝
1

𝑚𝑝⁢𝑛𝑝
⁢
𝑛𝑡⁢𝑛𝑖
⁢𝑚2
⁢T⁢⁢𝑔
−

 



Thermal Bremsstrahlung 
𝑒−⁢−𝑖𝑜𝑛; 𝑒+ − ion 

𝑒−⁢𝑒−; 𝑒+⁢𝑒+ 

𝑒−⁢𝑒+ 

Case1: Low energy 
dE

dt⁢dmtot
∝
1

𝑚𝑝⁢𝑛𝑝
⁢
𝑛𝑡⁢𝑛𝑖
ℎ⁢𝑚1.5

⁢⁢⁢ ⁢ 𝑇⁢⁢⁢⁢𝑔
−

 

 
Case2: High energy  
dE

dt⁢dmtot
∝
1

𝑚𝑝⁢𝑛𝑝
⁢
𝑛𝑡⁢𝑛𝑖
⁢𝑚2
⁢⁢⁢T⁢⁢⁢⁢𝑔

−
 

What’s⁢caused⁢the⁢
difference in this case? 

I’m⁢not⁢quite⁢sure⁢whether⁢the⁢𝑚1.5 causes the difference between 147 and 337 for 
the 𝑒−⁢−𝑖𝑜𝑛; 𝑒+ − ion v.s. 𝑒−⁢𝑒+ case. Using the reduced mass gives an overestimate of 
20%... 



Thermal Synchrotron 

Optically 
 thick  

emission 

Optically thin power law  
Synchrotron emission 

Turnover 
frequency 

Break 
frequency 

 The local synchrotron cooling rate is approximated as a 
sum of optically thick and thin emission: 

𝑞
.

𝑠
− =
2⁢πkT𝑒
3⁢Hc2

⁢𝜈𝑐
3 + 𝜖𝑠⁢ 𝜈 ⁢𝑑𝜈

∞

𝜈𝑐

 

*Note that there is some confusion in 
the units here, 𝑞

.

𝑠
− should be erg/g/s but 

for the synchrotron part, all units are 
erg/s/𝑐𝑚3   
 
I think just dividing by the mean density 
of the plasma should fix the small bug: 

𝑞
.

𝑠
− =
1

𝜌
⁢
2⁢𝜋⁢kT𝑒
3⁢𝐻⁢𝑐2

⁢𝜈𝑐
3 + 𝜖𝑠⁢ 𝜈 ⁢dν

∞

𝜈𝑐

 

 
Therefore, for the Synchrotron section, we will follow the book but keep in mind the 
small difference. 



Thermal Synchrotron –Optically 
thick part 

Since we are considering a Thermal distribution of emitting particles, the optically 
thick emission can be approximated by Rayleigh-Jeans Law 

𝐵𝜈⁢ 𝑇 =
2⁢kT

𝑐2
⁢𝜈2 

Then, calculating the power per unit 
volume gives: 
dE

dVdt
≈
𝜋

𝐻
⁢ 𝐵𝜈⁢ 𝑇 ⁢dν =

2⁢𝜋⁢kT𝑒
3⁢Hc2

⁢𝜈𝑐
3 

 
As given in the textbook. 

𝑞
.

𝑠
− =
2⁢πkT𝑒
3⁢Hc2

⁢𝜈𝑐
3 + 𝜖𝑠⁢ 𝜈 ⁢𝑑𝜈

∞

𝜈𝑐

 

*Note that in most texts, one will see that the intensity of optically thick 
synchrotron is 𝐼𝜈,thick⁢ 𝜈 ∝ 𝜈

2.5. That is derived using a Power Law population of 

emitters, not thermal (as is assumed here)! 



Thermal Synchrotron –Optically thin part 

1996ApJ...465..312E 

1996ApJ...465..327M 

Radio 
astrophysics. 
Nonthermal 
processes in 
galactic and 
extragalactic 
sources by 
Pacholczyk, A. G 

Normalizing the integration 

Integrate over relativistic Maxwellian??? 

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1996ApJ...465..312E&db_key=AST&link_type=ABSTRACT&high=52836ec0cf14735
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1996ApJ...465..327M&db_key=AST&link_type=ABSTRACT&high=52836ec0cf14842


Thermal Synchrotron –Optically thin part 



Comptonization – Why we are interested 

Electron Scattering Dominates 

From what we introduced last week about the opacities of electron scattering and 
absorption, we find from the figure below that electron scattering is more important. 



Comptonization – Inverse Compton 
In each of these photon scatterings, if the electron and photon energies are 
very different, an inelastic scattering (the Compton process) will occur, either 
raising or lowering the photon energy in the process. In most cases we will 
encounter, the photons will be cooler than the electrons, resulting in raising the 
energy of the photons and, therefore, cooling the hot, electron-scattering 
plasma in the process. 



Comptonization 
Since Compton⁢scattering⁢itself⁢doesn’t⁢create⁢new⁢photons,⁢what⁢is⁢does⁢is⁢to⁢
use the photons emitted by synchrotron and Bremstrahlung to steal more 
energy from the system. 
 
Therefore, one way to write the cooling rate is to multiply some Compton-
enhancement factor 𝜂𝐶 ⁢ 𝜈  

𝑞
.
= 𝜂br,𝐶 ⁢𝑞

.

br
− + 𝜂𝑠,𝐶 ⁢𝑞

.

𝑠
− 



Comptonization 



𝜌 = 10−10⁢𝑔 · cm−3 ; 𝐵 = 8380⁢𝐺 ; 𝐻 = 2.7 × 107⁢cm 

109⁢𝐾 ≲ 𝑇𝑒  
Synchrotron 
dominated 

109⁢𝐾 ≲ 𝑇𝑒  
Compton Enhanced 
Synchrotron dominated 

Bremsstrahlung quenched 
due to recombination of 
free electrons with ions. 2009ApJ...693..771F 

104⁢𝐾 ≲ 𝑇𝑒 ≲ 10
9⁢𝐾 

Bremsstrahlung dominated 

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009ApJ...693..771F&db_key=AST&link_type=ABSTRACT&high=52836ec0cf32726


Repeated Scattering 
After the initial emission of Bremsstrahlung or synchrotron photons, if the optical 
depth 𝜏es is high, these photons do not immediately leave the plasma.  
 
They remain within the hot medium, gaining energy from most of the inelastic 
scatterings they encounter. Depending on how large the Compton y parameter is, 
this can drastically affect the⁢final⁢spectrum⁢that⁢emerges⁢from⁢the⁢plasma. 



Comptonized spectra for different values of 
Sunyaev and Titarchuk’s parameter 𝛾 ≈ 𝑦−1 

Wien peak is produced as 
plasma is Compton thick. 

Compton thin but still produces 
a power law spectrum up to the 
characteristic thermal 
frequency kT𝑒 ℎ  

 As long as the injected photons 
are much cooler than the hot 
electron scattering plasma, the 
nature of the output spectrum 
from Comptonization depends 
mainly on y, not on the nature of 
the input spectrum. 

Single freq. photon 
injection 𝜈0 = 10

−3⁢kT𝑒 ℎ  


